
ABSTRACT

The aim of the work described in this paper is to develop
methods for automatically assessing the pronunciation
quality of specific phone segments uttered by students
learning a foreign language. From the phonetic time
alignments generated by SRI’s Decipher™ HMM-based
speech recognition system, we use various probabilistic
models to produce pronunciation scores for the phone
utterance. We evaluate the performance of the proposed
algorithms by measuring how well the machine-produced
scores correlate with human judgments on a large database.
Of the various algorithms considered, the one based on
phone log-posterior-probability produced the highest
correlation (rxy = 0.72) with the human ratings, which was
comparable with correlations between human raters.

1. INTRODUCTION

An important component of an effective language
instruction is the instructor’s feedback in the assessment of
the pronunciation quality, or detection/correction of specific
production problems or common mistakes that a student
would make. The recent evolution of speech recognition
technology has allowed us to explore new possibilities in
computer-aided language instruction, where the computer
may provide such feedback.

This work is part of an effort aimed at developing automatic
language instruction systems that grade the pronunciation
quality of speech uttered by students learning a foreign
language [1][2][3]. Previous approaches [1][2] focused on
rating an entire sentence rather than targeting specific phone
segments. In this paper, we extend previous work by
investigating various methods for automatically assessing
the pronunciation quality of individual phone segments
within a sentence. The ratings obtained may help the student
in detecting and/or correcting specific pronunciation
problems or mistakes that might serve as obstacles to the
improvement of the student’s language skills. For a detailed

treatment on the problem of automatically detecting
mispronunciation, see [4].

In the following, we describe various pronunciation scoring
schemes and provide experimental results that evaluate the
performance of the algorithms based on how well the
machine-produced scores correlate with the corresponding
human scores. We also conduct an experiment to estimate
the number of phone utterances the student must put into the
system to get reliable feedback on his or her pronunciation
proficiency.

2. THE DATABASE

The automatic scoring system devised in this paper was
developed to help American adults learn the French
language [3]. A database of transcribed native read speech
was used for training models for speech recognition and
pronunciation scoring. A database of nonnative read speech
was transcribed and scored for pronunciation quality by
expert human raters. The entire corpus consisted of speech
recorded from 100 natives of Parisian French (native
corpus) and from 100 American students speaking French
(nonnative corpus). Speech was recorded in quiet offices by
using a high-quality Sennheiser microphone.

A panel of five French teachers rated the pronunciation of
selected phone segments (4656 total) in the nonnative
corpus. A total of 10 phones (/an/, /eh/, /eo/, /eu/, /ey/, /in/, /
on/, /r/, /uw/, /uy/) were considered, and the scores were on
a scale of 1 (unintelligible) to 5 (native-like). The raters
listened to the sentence containing the phone segment of
interest, and were instructed to only consider that particular
segment and disregard all other segments in the sentence in
giving the scores. They were advised to reject utterances in
which the student experienced serious disfluencies or those
in which the audio quality was unacceptable. In addition, the
sessions were designed such that the raters encountered
some of the phone utterances more than once without being
informed. This was done to check the self-consistency of a
rater.
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3. CONSISTENCY OF HUMAN RATINGS

The ratings obtained from the human instructors serve as the
ideal target for which the machine-produced ratings should
aim. Therefore, it is important to first test the consistency of
these human scores both between raters and individually
within each rater. For measuring the consistency between
scores we used the correlation coefficient.

Using the scores of phone utterances that were rated by all
five raters, we computed the correlation between the scores
of two raters (inter-rater correlation). Two types of inter-
rater correlation were computed: at thephone level, pairs of
corresponding ratings for all the individual phone utterances
were correlated; at the(phone-specific) speaker level1, all
the phone scores from each speaker were averaged and then
the pairs of these speaker-average scores were correlated.
The self-consistency of a rater was assessed by correlating
the scores of phone utterances that had been rated twice by
the same rater (intra-rater correlation). The average inter-
and intra-rater correlation values are shown in Table 1.

Comparing the inter-rater correlation values at the phone
level (rxy = 0.55) with that at the sentence level (rxy = 0.65)
[2] suggests that raters are less consistent with one another
when rating phone segments than when rating sentences.
This may be explained by considering that in the phone
case, the rater has less information to base the score on than
in the sentence case. Correlation at the phone-specific
speaker-level is high (rxy = 0.80) and comparable to that at
the overall speaker-level (rxy = 0.87) [2]. Intra-rater
correlation is surprisingly high (rxy = 0.86), suggesting that
the human raters are highly consistent with themselves
despite being less consistent with one another. The
correlation values in Table1 will serve as the expected
upper bound on the performance of the scoring system.

4. PRONUNCIATION SCORING

The pronunciation scoring paradigm [5][6][7] uses hidden
Markov models (HMMs) [8], trained using the database of
native speakers, to generate phonetic time alignments of the

1.As opposed tooverall speaker-level correlation,
which is obtained by averaging sentence scores [1].

student’s speech. From these segmentations, we use the
following probabilistic measures [1] to obtain scores for
each phone segment.

4.1. HMM-based Log-likelihood Scores

For each phone segment, the log-likelihood score is
defined as

(1)

where  is the likelihood of the current frame with
observation vector ,  is the duration (in frames) of the
phone segment, and  is the starting frame index of the
phone segment. Dividing by allows us to eliminate the
dependency of the pronunciation score on the duration of
the phone.

4.2. HMM-based Log-posterior Probability Scores

First, for each frame belonging to a segment corresponding
to the phone , we compute the frame-based posterior
probability  of the phone  given the observation
vector :

(2)

The sum over  runs over a set of context-independent
models for all phone classes.  represents the prior
probability of the phone class. The posterior score for
the phone segment is then defined as

(3)

4.3. Segment Duration Scores

The procedure to compute the duration-based phone score is
as follows. First, from the Viterbi alignment we measure the
phone duration in frames; then its value is normalized to
compensate for rate of speech. To obtain the corresponding
phone-segment-duration score, the log-probability of the
normalized duration is computed using a discrete
distribution of durations for the corresponding phone. The
discrete duration distributions were previously trained from
alignments generated for the native training data.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the scoring algorithmswe
used a test set with an average of 30 sentences from 100
adult American speakers with various levels of proficiency
in French.

Corr. Type Level Number of scores Corr elation

Inter -rater Phone 144 0.55

Inter -rater Speaker 3250 (32.5 per spkr) 0.80

Intra-rater Phone 153 0.86

Table 1: Average inter- and intra-rater correlations across all
phones for five human raters.

l̂

l̂
1
d
--- p yt qi( )log

t t0=

t0 d 1–+

∑=

p yt qi( )
yt d

t0
d

qi
P qi yt( ) i

yt

P qi yt( )
p yt qi( )P qi( )

p yt q j( )P q j( )
j 1=

M

∑
---------------------------------------------=

j
P qi( )

qi ρ̂

ρ̂ 1
d
--- P qi yt( )log

t t0=

t0 d 1–+

∑=



5.1. Human-machine Correlation for Phone Scores

As in the case of assessing the consistency of human raters,
two types of correlation were computed between the
machine scores and the corresponding human scores (phone
level and phone-specific speaker level).

Table 2 shows the phone-level correlations between human
and machine scores for some of the individual phone classes
considered in this study. An average of about 450 phone
scores was used to compute the correlation for each phone
class.We see that the measure based on posterior probability
is the best (rxy = 0.44) at capturing the pronunciation quality
of a single phone segment. Note also that correlation value
depends on the phone class, yielding a maximum for /uy/
(rxy = 0.54) and a minimum for /uw/ (rxy = 0.32). Phone
duration scores seem to be almost uncorrelated with the
corresponding human ratings (rxy = 0.06), and thus duration
turns out to be a very poor measure at the phone level. This
could be understood by observing the following: First,
phone duration for vowels is highly variable even among
native speakers. Second,only a single measurement of
phone duration is used to score a phone. So unlike the other
two features, there is no segment averaging of measured
features, making duration a noisy feature at the phone level.

Table 3 shows correlations between human and machine
scores at the speaker level with a total of 4656 phone
segments across 100 speakers. We also show the overall
speaker-level correlation values from [1] for comparison.
We see that the correlation values corresponding to specific
scores are lower than those in the case of overall scores. This
is especially true for duration scores, which reconfirms that
phone duration should be used for pronunciation scoring
only when there is a sufficient amount of data for averaging.
At the speaker level, the posterior-probability-based score
again has the highest correlation value (rxy = 0.72).

We now compare the human-machine correlation values
from the above tables with correlations between human
raters that were obtained in Section 3. Figure 1 gives a
comparison between the two. As we can see, at the speaker
level, the performance of the scoring system (in terms of
correlation with human raters) is comparable to that of a
human rater. However, at the phone level, the correlation
only reached 80% (rxy = 0.44) of the target value (rxy = 0.55)
corresponding to correlation between human raters.

5.2. Effect of Varying the Amount of Speaker Data

To evaluate the system’s performance (in terms of human-
machine speaker-level correlation) as a function of the
number of test utterances per speaker, we conducted another
experiment. We varied the number of machine phone scores
per speaker (N) from 10 to 320 in obtaining the average
machine score for each speaker. Then, for eachN, we
computed the correlation between these speaker-average
machine scores and the speaker-average human scores
obtained using theentire human score data.Of course, the
assumption here is that the speaker-average scores from the
entire database (4656 scores, 46.56 scores per speaker) of

Phone Duration Lik elihood Posterior

/an/ 0.13 0.23 0.40

/in/ 0.08 0.29 0.45

/r/ 0.06 0.23 0.48

/uw/ 0.07 0.21 0.32

/uy/ -0.03 0.41 0.54

Avg. 0.06 0.27 0.44

Sent.-level Corr. 0.47 0.33 0.58

Table 2: Human-machine correlation at the phone level for vari-
ous scoring measures. Sentence-level human-machine correlation
values from [1] are also shown at the bottom for comparison.

Algorithm
Level of Correlation

Specific Spkr. Overall Spkr.

Normalized Duration 0.46 0.84

Lik elihood 0.36 0.50

Posterior Probability 0.72 0.88

Table 3: Phone-specific speaker-level correlation values between
human and machine scores along with overall speaker-level corre-
lation values from [1].
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Figure 1: Comparison of human-machine correlation with
human-human correlation at the phone and speaker level. Shaded
bars represent the average human-machine correlation while
white bars represent the average human-human correlation.



human ratings approximate the true pronunciation
proficiency of the students.

In extracting the machine scores across all 10 phones,
constant proportion is maintained for each phone. For
example, if the phone /an/ constitutes 20% of the 10 phones
uttered in the entire database, and /eh/ constitutes 10%, then
for N=40, we would extract  scores from /an/
and  scores from /eh/, and so on.

As we can see in Figure 2,we get improvement in
performance as we increase the number of scores per
speaker N. This is not surprising since more information
leads to a more accurate evaluation of the speaker’s overall
proficiency in pronouncing the phones. Correlation for
duration scores increases drastically with increase of data
from N=10 toN=160 because of the effect of averaging as
discussed earlier. Posterior probability measure outperforms
the other measures for all values ofN, and its correlation
value rapidly increases up to about 0.7 atN=40. This
suggests that about 40 phone utterances per speaker is
sufficient for obtaining a reliable score from the system.

6. CONCLUSIONS AND FUTURE WORK

We have presented methods to capture the pronunciation
quality of specific phone segments. We evaluated the
performance of the proposed algorithms by measuring how
well the machine scores correlate with corresponding
human scores in the case of rating single phone utterances
(phone level) and also when judging a student’s overall
ability to pronounce particular phones over multiple
utterances (speaker level). We found thatthe algorithm
based on phone posterior probability produced ratings that
have the highest correlation with the human ratings in both
cases. At the speaker level, the system’s performance was

comparable to that of a human rater; however, at the phone
level, there exists a performance gap, which calls for further
research in the case of rating a single phone utterance.

Research presented in this paper was based on a pilot study
with a limited amount of test and training data. We are
currently working on the collection of a larger database of
human ratings. The new database will focus on phones that
have more linguistic importance (e.g., phones that are
commonly problematic to students) in addition to having
more phone ratings per speaker. This will help us devise
new schemes to improve ratings of individual phone
utterances. In addition, the scoring algorithms could be
combined with algorithms that detect mispronunciation [4]
to provide a more comprehensive feedback to the student.
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Figure 2: Speaker-level human-machine correlation for various
numbers of phone utterances per speaker.


